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Abstract— In this short paper, a working floating light bulb
prototype will be presented along with simulations on its
controller design. The light bulb contains a permanent magnet
that is used in conjunction with an electromagnet solenoid to
perform the levitation task. The energy is transferred to the
light bulb with near-field wireless power transmission, where
efficiencies of the order of 25% were achieved.

Details on the failed implementations will be provided along
with simulations that provide insight on the reasons why some of
the controller topologies applied failed. Three controller topolo-
gies will be presented: An LQR-Observer based controller, a
digital hysteresis controller and an analog hysteresis controller.

I. INTRODUCTION

Magnetic levitation is a very interesting control problem
that has several potential applications in the industry. As
Earnshaw’s theorem demonstrates, there is no configuration
of permanent magnets in space that is statically stable. There-
fore, in order to achieve magnetic levitation for a specific
application involving permanent magnets, it is necessary to
employ some level of active control that changes the system
poles to the left-half of the Laplace plane.

Although applications of magnetic levitation are usually
related to high-technology industrial applications such as
levitating trains and heavy-duty shaft bearings, devices acces-
sible to the general population are already becoming ubiq-
uitous and being mass-produced by several manufacturers
as decorative household items. This work will focus on
the engineering design of a device that targets a similar
decorative application, where a functional light bulb is kept
floating through a closed-loop magnetic levitation system.

II. HARDWARE DESIGN AND IMPLEMENTATION

A. Wireless Energy Transfer

In order to provide the floating LED with the energy
required for light emission, a wireless transmitter/receiver
circuit was designed and implemented. A simple resonant
air-cored transformer was employed for near-field energy
transfer. This form factor was chosen primarily due to its
implementation simplicity and the ability to package into
a lightweight form factor, which is required for levitation
within the electromagnet force capacity.

The driver consists of a low-side MOSFET driver, as
shown in Figure 1, driven by a 600kHz square wave gen-
erated by a dedicated Arduino Nano (ATMega 328P). The
frequency corresponds to the LC tank fundamental resonant
frequency. Since the coupling coefficient of the TX/RX coils
is low, the effect of the RX circuit on the resonant frequency
is negligible. The microprocessed waveform generation was

particularly chosen due to its temperature stability, crucial
for high Q-factor transformers.

The capacitors C1 and C2 are polyester with very low
ESR, which is also crucial for the formation of a high Q
tank circuit, necessary for the strong coupling of the two coils
[1]. The coils L1 and L2 were four manually wound, 20 mm
diameter loops of AWG24 wire. The inductance indicated in
Figure 1 was measured experimentally by finding the tank
circuit resonant frequency with a function generator and an
oscilloscope. Although a design study on the coil parameters
was not performed, the guidelines used involved maximizing
the Q factor of the tank circuits by minimizing the parasitic
ESR from the coil wire resistance. This was accomplished
by increasing the wire diameter and minimizing the number
of loops. On the other hand, these actions will reduce the
self-inductance of the coil, increasing the resonant frequency.
Although in the general case it is not an issue to resonate
at higher frequencies, the efficiency of the amplifier circuit
would be affected by the parasitic capacitance of the MOS-
FET, requiring faster-switching drivers and a more complex
architecture to support the higher switching current.

Although the design was settled by experimentally build-
ing a few different coil configurations with the target LED
load, simulations on the coupling coefficients that could
be achieved with the coils used were performed to under-
stand the performance levels achieved and whether a strong
resonant coupling regime was achieved with the described
design. Figure 2 shows the resulting coupling coefficients
obtained through FEMM [2]. The desired distance between
the the TX and RX coil was about 13 millimeters, which
corresponds to a coupling coefficient of κ = 0.065, how-
ever simulations were performed across a larger range to
understand the behavior as the RX coil is moved farther
from the TX coil. Both tank circuits have a damping ratio of
ζTX = ζRX = 0.01, estimated from the ESR values of the
components. As defined by [1], the strong coupling regime
where efficient wireless energy transfer happens when:

κ2

ζTXζRX
> 1 (1)

The strong coupling regime happens throughout the range
plotted as long as the coil axes are aligned, however the
voltage generated in the RX is only sufficient to light up
the LED for x < 15 mm. Unfortunately, the test equipment
required to characterize the true power transfer efficiency of
this implementation was not available, however it is believed
that the overall efficiency was less than 25% based on the
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Fig. 1. Air-cored transformer driver circuit and receiver circuit.
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Fig. 2. Coupling coefficients obtained through FEMM simulations and
their corresponding power transfer efficiencies for a 30Ω load, considering
the driver resonates the transmitter coil.

power supply power consumption and the LED specifica-
tions.

B. Magnetic Levitation

The magnetic levitation hardware implementation used
materials available to an electronics hobbyist. During the
controller implementation phase it was found that this de-
cision introduced a large amount of uncertainty in the model
and led to the failure of the theoretical approaches used.
However, since this is a very realistic scenario in engineering
design, it serves as a benchmark to understand the require-
ments for control robustness.

The hardware, depicted in Figure 3, consisted of a hand-
wound electromagnetic coil attached to a structure in the
form of a lamp shade. The lamp shade, however, has the sole
purpose of making space to house the electronics for both
the magnetic levitation driver and the wireless transmitter. A
Hall effect sensor (Honeywell SS41) was used to measure
the position of the light bulb by sensing the magnetic field
of the neodymium magnet that was embedded on the light
bulb construction. An undesired side effect, however, is that
the hall effect sensor also senses the magnetic field of the
electromagnet, producing an output for the controller that
contains two states encoded (electromagnet current and light
bulb position).

Electromagnet coil

TX coil

RX coil

Neodymium magnet

LED

Space for electronics

Structure

Hall effect sensor

Fig. 3. Mechanical arrangement of the hardware in the lamp shade form
factor.

The electromagnet consisted of 1 Kg of AWG24 copper
wire wound over a spool of approximately 25 ID x 75 OD
x 55 L mm. The coil resistance was measured to be 20 Ω at
ambient temperature and its inductance L = 33.6 mH. The
inductance was easily measured from the step response of
the coil in series with a 1 kΩ resistor.

A low-side driver of similar architecture shown in Figure 1
was used to drive the electromagnet through high frequency
PWM switching. The full circuit implementation will be
discussed in Section IV, since the circuit topology was
different for the analog and digital implementations.

III. CONTROLLER DESIGN AND SIMULATIONS

A. Traditional Equations of Motion

Although the floating magnet plant is a true six-degree-
of-freedom (6-DOF) system with all spatial and rotational
freedom, it is generally sufficient to restrict the model to the
unstable degree of freedom for control purposes. The only
unstable mode is associated with the motion of the permanent
magnet in the axis of the solenoid, which is going to be called
z in this work. The positive direction of z is aligned with
the gravity vector. In the Appendix, a model based on an
infinitesimal magnetic dipole pair is shown to indicate the
unstable eigenvalues of the linearized 6-DOF plant.

It is widespread in the literature ([3], [4]) the use of
the same simplified non-linear model for a solenoid-based
floating magnet, and it is customary to write the equations
of motion in the following form:

z̈ = g − k I
2

z2

İ =
u

L
− IR

L

(2)

Where k is an arbitrary constant proportional to the
electromagnet strength, g is the gravitational acceleration, I



is the solenoid current and R,L are the solenoid inductance
and equivalent series resistance. The control input u is the
voltage given to the solenoid. The equations simply model
a force balance between the gravity and the electromagnet
force, as well as the linear dynamics of the electromagnet
circuit.

B. Identification of System Non-linearities

Although the model presented in the last section is based
on theoretical results, the simplifying assumptions required
to build the model are too restrictive and the real device
did not follow the non-linearity F ∝ z−2, according to
measurements made.

In order to build a model that more accurately describes
the real device, measurements of the relevant parameters
were performed and converted into polynomial fits that de-
scribed the non-linear functions observed. Then the equations
of motion for the controllable modes can be modified, given
that only the solenoid intensity (ms in the Appendix) is
accessible through the control input.

1) Electromagnet Force: The first non-linearity analyzed
was the electromagnetic pulling force exerted on the per-
manent magnet, both as a function of the magnet distance
and the current input. A measurement of the force versus
distance was performed with a scale (resolution 0.1 g) and
an micrometric traverse. The magnet to be levitated was
placed in the scale with an extra plate that added 120 grams
of mass to prevent the magnet from being lifted off the
traverse during the test. With the scale tared, data points
were then taken at discrete locations with the magnet running
the maximum current available and a polynomial curve fit
was performed, as displayed in Figure 4. Since the weight
of the permanent magnet was 24.2 grams, data points at
greater distances were not taken as the system would just
drop the magnet. The polynomial fit chosen was a quadratic,
mostly due to its low VC dimension (to prevent overfit). A
comparison with the theoretical F ∝ z−2 is shown in a red
dashed line, showing how inappropriate the theoretical model
is to describe the real device behavior. It is believed that the
main source of discrepancy is the permanent magnet being
on the near field of the electromagnet (z−2 decay assumes
far field of two infinitesimal magnetic dipoles).

Since the measurements were performed manually, it was
noticed that temperature effects due to the electromagnet
warming up when mounted in the enclosure were signif-
icantly affecting the curves obtained as detailed measure-
ments took around 10 minutes to perform. Because of this
added variable, the number of data points was limited to
minimize the effect of warming up on the results. After this
limitation, the measurements took approximately 1 minute
to perform, which significantly improved the repeatability of
the measurements. All measurements shown in this section
were started with a cold coil (Tcoil ≈ 25◦C).

The non-linearity model for the magnetic attraction force
as a function of current, which is usually regarded as a
function F ∝ I2 (or, if following the Biot-Savart law, F ∝
I), was also found to be inadequate. A measurement with the
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Fig. 4. Measured electromagnet force and comparison of a polynomial fit
versus a C/z4 fit, showing the traditional model inadequacy. The maximum
control input was given to the electromagnet.
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Fig. 5. Measured electromagnet force for z = 10 mm and comparison
with a square-root fit showing excellent agreement. Force is normalized by
the maximum pulling force Fmax measured at full current Imax.

permanent magnet fixed at z = 10 mm was performed and,
as shown in Figure 5, a square root fit F ∝

√
I was found

to show excellent agreement. The traditional F ∝ I2 is an
analytical solution that does not correspond to the physical
design, as it assumes a high permeability material in the
solenoid core with only a small air gap. The Biot-Savart
current loop (F ∝ I) does not consider the effect of finite
length of the solenoid. Limited discussion on the physics
will be provided here to explain the measured F ∝

√
I

dependence, as a more comprehensive analytical solution
would be necessary.

Although the plot shown in Figure 4 uses for simplicity
millimeters and grams-force as length and force units, re-
spectively, the curve fits were performed in SI units to ensure
consistency during modeling and controller implementation.
The polynomial coefficients for force as a function of current
F1(I) and as a function of magnet distance F2(z) in SI units
were, then:

F1(I) = 1.14
√
I

F2(z) = 1367z2 − 59.2z + 0.87
(3)

It was verified that the magnet force Fm = F1(I)F2(z)
predicted the force correctly for other combinations of (I, z).

2) Hall Effect Sensor Reading: Due to the placement of
the Hall effect sensor and its principle of operation, the
sensor will respond to both the intensity of the permanent
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Fig. 6. Raw signal from the hall effect sensor (from the Arduino 10-bit
ADC) as a function of electromagnet current.

magnet field (the desired measurement, z) and the intensity
of the electromagnet field (which is a function of the control
input and the system dynamics). This is inevitable as the
Hall effect sensor is required to be placed between the two
components in order to have a meaningful signal-to-noise
ratio. Placing the Hall sensor between the permanent magnet
and the structure base was an option that was ruled out due to
aesthetical constraints. Another alternative would be to use a
sensor that does not rely on magnetic effects to measure the
coil position, where an example would be a time-of-flight
optical sensor. These sensors, however, are prohibitively ex-
pensive for the small distances that the electromagnet could
operate in this implementation, especially at the sampling
rates necessary for control.

For these reasons, it is imperative to measure the in-
fluence of the electromagnet on the sensor reading. Such
measurement is shown in Figure 6 as a raw signal from the
Arduino ADC, which was fit to a quadratic polynomial. For
reference, the reading at I/Imax = 1 when the permanent
magnet is at z = 10 mm is 681 counts, which shows the
interference generated by the electromagnet is not negligible.
Other measurements not shown in this report showed that
the readings from the Hall effect sensor when both the
electromagnet and the permanent magnet were present could
accurately be described as a superposition of the independent
readings from each component. Therefore, a model for the
output as measured by the microcontroller was defined as:

y = A1(I) +A2(z) (4)

Where both A1(I) and A2(z) are non-linear functions.
A1(I) is the polynomial fit shown in Figure 6. For brevity,
the chart for A2(z) was omitted as a similar procedure was
used. The functions A1(I) and A2(z) were measured to be:

A1(I) = −29.7I2 + 54.14I

A2(z) = 8.94× 105z2 − 3.73× 104z + 954.4
(5)

3) Generalized Non-linear Model: Since most of the
measurements made resulted in non-linear curve fits that are
not of the form shown in Section III-A, the equations of
motion need to be generalized to account for the arbitrary
non-linear force and input functions. These functions will

then be replaced with the polynomial coefficients fitted.
Furthermore, the linear system solenoid-resistor is also going
to be introduced in the model:

z̈ = g − 1
M F1(I)F2(z)

İ = u
L −

RI
L

y = A1(I) +A2(z)

(6)

Where R is the solenoid wire parasitic resistance, L is
the solenoid inductance and u is the voltage applied to
the solenoid (which is also the control input given by the
controller).

C. Linearization Around an Equilibrium Point

A linear controller can be built based on the non-linear
equations of motion (6) if they are linearized around an
equilibrium point (x0, u0). First, we define the system state
vector x as:

x =

żz
I

 (7)

The equations of motion (6) can then be linearized by
defining the Jacobian matrix of the system dynamics without
input:

J =

∂z̈/∂ż ∂z̈/∂z ∂z̈/∂I
∂ż/∂ż ∂ż/∂z ∂ż/∂I

∂İ/∂ż ∂İ/∂z ∂İ/∂I

 (8)

Which, evaluated for Equation (6), results in:

J =

0 −F1(I) 1
M

dF2

dz −F2(z) 1
M

dF1

dI
1 0 0
0 0 −R

L

 (9)

Now, assuming there is an equilibrium point for (x0, u0),
it is possible to linearize the equations by assuming the
equilibrium point is disturbed by ∆x and ∆u:

∆ẋ = A∆x+B∆u

∆y = C∆x
(10)

Where A = J is the uncontrolled system Jacobian. Since
there is no non-linearity in the input, B is simply:

B =

 0
0

1/L

 (11)

As discussed in Equation 4, the output also is non-linear
in relation to the system state. A similar linearization process
is used to find C:

C =
[
0 dA2

dz
dA1

dI

]
(12)

Note all derivatives in A and C are evaluated at the
equilibrium point x0.
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Fig. 7. Effect of the input cost matrix R on the system states for an initial
disturbance ∆z(t = 0) = 0.5mm and ∆ż(t = 0) = 10mm/s.

D. LQR Controller Design

With a linearized system equation in hands, the design
of a controller can be done to place the system poles at
stable frequencies. Defining the system variables and the
equilibrium point for the analysis:

R = 20Ω

L = 33.6× 10−3H

M = 30× 10−3Kg

z0 = 13× 10−3m

ż0 = 0m/s

I0 = 0.605A

(13)

Calculating the eigenvalues of A for the equilibrium point
given, one unstable eigenvalue (λ1 = 26.4) and two stable
eigenvalues (λ2 = −26.4 and λ3 = −595.2) are found.
Therefore, the uncontrolled system is unstable, as expected
from the physics. It is worth noting that, for the values
provided, the system is controllable and observable.

Since the desired equilibrium point is somewhat close to
saturation (Imax = 0.81 A), the control input during the
transient cannot exceed ∆I = 0.205 A, corresponding to a
maximum control input of ∆u = 4.05 V. The LQR algorithm
provides a means to tune the aggressiveness of a control law
by varying the input cost matrix R. In Figure 7 the linear
system response for differentR values is shown for the linear
case, for an initial disturbance of ∆z(t = 0) = 0.5mm
and ∆ż(t = 0) = 10mm/s. The initial disturbance was
arbitrarily chosen, but it reflects the inaccuracy of the light
bulb placement during the initialization of the system. The Q
matrix shown in Equation 14 was used for the optimization.
Its form was chosen to bring all states (which have different
units) to similar orders of magnitude such that the LQR
algorithm would weight deviations in all states equally.

Q =

1× 102 0 0
0 1× 103 0
0 0 1

 (14)

To understand the impact of the system non-linearities in
the controller performance, the same controllers obtained for
Figure 7 were simulated again for the full non-linear system
using the Matlab ODE45 integrator, and their responses are
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Fig. 8. Same control laws used for Figure 7 applied in the non-linear
system modeled in Section III-B.

plotted in Figure 8. It is very interesting how the controller
responses are vastly different due to the non-linearity. This
behavior, however, is expected because the non-linearity is
very strong considering the displacements analyzed. Even
though the system stability was not compromised, the con-
trollers withR = 1 andR = 1×10−2 now display saturation
considering the system capacity, which means they would
fail in the physical device. Surprisingly, the only controller
that does not display saturation is the most aggressive (R =
1×10−4), where ∆I peaked at 0.2 A. On the other hand, the
control input is very close to saturation, leaving little margin
for inaccuracies. Other controllers were designed with pole
placement at different locations in the s-plane, with similar
performance degradation when simulated in the non-linear
system.

The controller gain matrix K obtained forR = 1×10−4 is
shown below. It will be further analyzed in the next sections,
as it was one of the few candidates that did not saturate the
control input when applied to the non-linear system.

K =
[
−1214 −18467 85.2

]
(15)

With this controller matrix, the eigenvalues of the linear
system were placed at λ1 = −3034s−1, λ2 = −87.3s−1

and λ3 = −8.5s−1. However, the first eigenvalue places
a very strong requirement when the system is digitized
for microcontroller implementation, as it sets the order of
magnitude of the sampling rates necessary to avoid aliasing.

Reducing the magnitude of λ1 is possible at the expense
of saturating the controller and even making the system
unstable. For example, for λ1 = 510s−1 and maintaining
the other two pole locations, the non-linear system becomes
unstable for the initial disturbance studied, as shown in
Figure 9. As will further be discussed later, this is believed
to be one of the reasons why the digital implementations of
this controller (as well as many other attempts not reported
here) failed.

E. Observer Design

The controller designed in the former subsection requires
full state feedback. However, as discussed in Section III-B,
the Hall effect sensor will only provide indirect information
about the system state, requiring the design of an observer to
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enable the use of the LQR controller in the practical device.
Only the case without noisy measurements will be examined
here, as the linear observer was found to lack the robustness
necessary to deal with the system non-linearities.

A linear system observer can be simply designed by using
Ackermann’s method on the linearized system matrix AT and
the linearized output matrix CT . Pole placement can then be
performed arbitrarily, but in general as a rule of thumb it
is desired to have the observer settle around 5 to 10 times
faster than the controller poles.

A Luenberger observer L was designed with pole place-
ment at locations 10 times faster than the controller poles
(λo,i = 10λc,i). This observer was applied together with the
control law K from Equation 15 for the linear system. As
can be observed from Figure 10 (compare against Figure 7),
the observer degrades the performance but is still stable.

If this observer is now applied to the fully non-linear
system of Equation 6, a very fast instability develops (not
shown). In order to investigate the effect of the non-linearity
that makes the system unstable, the output non-linearity was
removed by replacing the y equation in Equation 6 with its
linear version at the equilibrium point. This change makes the
system stable again, and the results are ploted in Figure 11.
The system settles in a different equilibrium point because its
linear observer applied to the non-linear system makes the
controller believe it is elsewhere in the state space, which
is clearly observed by the steady-state error between the
true and observed state lines. When the input non-linearity
is added to the simulation, the error in the observed state
becomes so much larger that it destabilizes the controller.

Because the simplified, noiseless version of the linearized
controller/observer already saturates the control input (not
shown in Figure 11, but can be inferred from I > Imax),
the linearization technique is unlikely to produce any mean-
ingful results for the physical system. Therefore, effects of
noise, time discretization, output digitization, control input
discretization and PWM will not be further analyzed as
increased performance degradation from these effects is
expected.

F. Hysteresis Controller

Perhaps on the opposite side of the spectrum of controller
complexity lies the hysteresis controller, sometimes also
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implemented in Fig. 10 when simulated in the non-linear system. Output
equation is still simulated as fully linear.

called the Bang-Bang controller. It is very common to use
a hysteresis controller in magnetic levitation apparatuses,
especially in hobby level projects. Apart from its obvious
simplicity, it seems to be popular belief that this kind of con-
troller is unconditionally stable under high enough sampling
frequencies. However, no theoretical evidence supporting
such claim was found in the literature review performed in
this work.

The hyteresis controller has, in its simplest form, only
one parameter. A signal s is generated as a function of the
sensor inputs and compared with a threshold value t. Then,
the controller is simply defined as:

u =

{
0, for s ≤ t
Ku, for s > t

(16)

In the system studied, the signal s is a function of the
only input (s = −y) and the threshold is a function of the
equilibrium point input value (t = −y0 = −642). The signs
are reversed because y decreases as the permanent magnet
falls.

Simulation results of this control rule applied on the fully
non-linear controller for the same initial conditions presented
in Section III-D are shown in Figure 12. Apart from the
effect state and output non-linearity, this simulation was also
performed with digitization effects (sensor bit rounding).

In this simulation, the physics were resolved with a time
step of 1 × 10−6 s and the control input was updated
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Fig. 13. Successful hysteresis controller simulated at initial conditions
∆ż(t = 0) = 0 mm/s, ∆z(t = 0) = 0.2 mm and ∆I(t = 0) = 0 A. In
the limit cycle, the control input waveform is a 2470 Hz square wave.

every 1 × 10−4 s or 1 × 10−3 s (the two sampling rates
shown in Figure 12)). Lower sampling rates for the controller
make the system more unstable, but increasing the sampling
frequency does not improve the system stability for the
initial conditions used. The results show that the hysteresis
controller is also unstable for this initial condition. However,
it is worth noting the time scale of the simulation, which is
two seconds long. The LQR-observer based controller, for
comparison, exceeded z = 20 mm in 1 millisecond for the
same conditions with the full non-linear system.

Since the hysteresis-based controller was more promising
on its stability and robustness characteristics, another simu-
lation was performed with a more lenient initial condition
of ∆ż(t = 0) = 0 mm/s, ∆z(t = 0) = 0.2 mm and
∆I(t = 0) = 0, for which the LQR controller applied to the
linear system still produces an unstable output. The results
for the hysteresis controller, shown in Figure 13, display that
the controller is now stable to these initial conditions. The
longer simulation time of 5 seconds show that the controller
reaches a stable point, which is at z = 13.05 mm due to
the rounding of the sensor reading. A somewhat narrow-
band limit cycle switching at 2470 Hz is reached at this
equilibrium point. However, the control input is not a pure
square wave, having noticeable frequency jitter.

Finally, the effect of bit noise was assessed for the same
initial conditions of ∆z(t = 0) = 0.2 mm and the other two
states being the equilibrium conditions. The bit noise was
observed to be an issue during the practical implementation,
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Fig. 14. Effect of random bit noise in the hysteresis controller stability for
three bit change probabilities Pbit. Initial conditions are the same as Fig.
13.

and for this study it was defined as a uniformly distributed
random process that would add or subtract one unit to the
sensor reading y with a probability Pbit. The adding or
subtracting would have equal probabilities. Other models,
like introducing white noise in the analog signal prior to
digitization had similar effects, however not reported here.
The results of this study are summarized in Figure 14 and
show that the system is robust to a bit noise probability of
approximately Pbit = 2× 10−4. Above this noise level, the
system becomes unstable. Unfortunately, it was observed em-
pirically from reading the Hall effect sensor to the Arduino
ADC that the probability of last bit flipping with the coil and
the wireless transmitter off was of Pbit ≈ 0.1 when reading
1× 105 samples. Similar tests at arbitrary magnet positions
(still with the electromagnet off) were performed to remove
the bias that an analog level between the two bit values could
be the cause of bit flipping, with similar probability levels.

IV. PHYSICAL IMPLEMENTATION

Since the observer-based controller was found to lack the
robustness necessary to be implemented in the real hardware,
experimental data on its instability will not be presented
herein for brevity. Many experiments were performed with
the digital version of the observer-based controller, but all
resulted in unstable systems. The deeper analysis shown in
Section III-E reveals the causes of the controller failure,
which in summary are related to the high non-linearity of
the physical system and the non-linear coupling of two
state variables in the input. The remaining non-idealities
(digitization, sampling, noise) only exacerbated the effect of
implementing an inadequate controller algorithm.

In the following subsections the results from the imple-
mentation of the hysteresis controller will be shown and
analyzed.

A. Digital Hysteresis Controller

The digital implementation using an Arduino Nano board
was implemented for both the LQR and the hysteresis
controller. Its electrical circuit is shown in Figure 15 (a).
The only input is the Hall effect sensor, and it drives the
output MOSFET with a digital output. For the failed LQR
implementations, the output signal to the MOSFET was
an 16kHz, 8-bit PWM signal generated from the ATmega
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Fig. 15. Schematics of the driver circuits for the electromagnet. (a) Digital
controller using an Arduino Nano. (b) Analog controller using an operational
amplifier operating as a comparator.

Timer0 clock. Every iteration of the main loop would update
the register that controls the duty cycle of the PWM signal,
which had 8 bits of resolution, for the LQR controller case.

For the digital hysteresis controller, however, the im-
plementation was much simpler. The signal read directly
from the Hall effect sensor was directly compared with the
threshold value and updated the digital output according to
Equation 16. Since the sampling rate of the microcontroller
depends heavily on the main loop overhead, the fastest con-
troller obtained (operating at approximately 3.2kS/s) could
not send signals to the computer for recording and analysis.
However, by using the USB to Serial converter embedded
in the Arduino, the signals could be sent with increased
overhead, which reduced the sampling rate to 1.95 kS/s.

Both hysteresis controllers, however, were unstable at
the sampling rates achieved. An example signal from the
controller that used the USB to Serial interface (slower) is
shown in Figure 16. It displays the raw Hall effect sensor
signal, as read directly by the Arduino from its 10-bit ADC.
This signal can be directly compared with the function for
y given in Equation (4). As the figure displays, the digital
hysteresis controller is unstable. The simulations performed
in Section III-F point to two main causes for the instability:
The ADC noise and the very low sampling rate. The problem
with the sampling rate, specifically, is that the controller
cannot capture the effect of the electromagnet dynamics,
which is very fast (about 1.7 ms time constant). Since a
faster sampling rate is not viable with the Arduino hardware,
a decision was made to change the hardware and implement
an analog controller.

B. Analog Hysteresis Controller

The analog controller implemented is a simple comparator
operational amplifier and replaces the Arduino, as shown in
Figure 15 (b). The unit gain bandwidth of the LM741 is very
large, typically 1.5 MHz, but for the input changes expected
(order 50mV) the output is expected to have a bandwidth in
the order of 15 kHz. Therefore, a performance improvement
in relation to the digital controller is expected, obviously
at the cost of controller flexibility. The voltage Vref to the
comparator was supplied by the Arduino board, as there was
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Fig. 16. Input seen by the Arduino controller operating a hysteresis
controller at 1950 Hz. Input plateau at final time is the signal when the
electromagnet is on but the permanent magnet is far.

Fig. 17. Snapshot of the tracking video representing the tracking performed
in the physical device. Blue box represents the feature window. Blue star
is an arbitrarily placed point for visual confirmation of tracking success.
Video of the tracking point available here. A more complete video of the
working device is provided in this link
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Fig. 18. Tracked image data for the magnet location as a function of
time for the analog hysteresis controller based on the LM741 operational
amplifier. ∆x represents the sideways motion. Note the very long time scale.

https://youtu.be/apc3_NBMzqA
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no reason to remove it from the hardware. It was generated
by supplying a higher PWM rate (64kHz) through an RC
low-pass filter. The Arduino Nano hardware does not have
any digital-to-analog converters.

In order to assess and report the efficacy of the analog con-
troller, a digital image correlation algorithm was developed to
track images of a video of the floating light bulb in operation,
giving quantitative evidence of the results achieved. A simple
dot pattern was used to re-scale the images to physical
coordinates.

A frame of the tracking video is shown in Figure 17 with
the light bulb successfully floating and lighting up. The full
video is available online in this link. The figure also shows
the feature window used, which provided good tracking
accuracy due to its contrasting colors. It also provided an
axisymmetric surface, which was necessary as the lamp
rotated during the capture due to the expected misalignment
during initial placement. The tracking was performed in
grayscale images, and the z and x displacements are shown
for 20 seconds of a video in Figure 18. They showcase
the effectiveness of the analog hysteresis controller, which
in practice holds the lamp for very long times (about 2-10
minutes). Some discussion on the reasons why the controller
becomes unstable will be provided in the next section.

V. CONCLUSIONS AND PRACTICAL
CONSIDERATIONS

In summary, this practical controller design exercise
showed several engineering challenges that must be over-
taken in order to successfully build a magnetic levitator. In
this last section, some practical considerations and lessons
learned will be briefly discussed to summarize the difficul-
ties encountered during the physical implementation of the
controller.

1) The Danger of Simplifications: It is very attractive to
attempt to simplify the real-world applications to tractable
mathematical constructs in order to gain insight about a prob-
lem. However, it is more often than not that the practicing
engineer will find the models insufficient to provide useful
solutions in real applications.

In the case studied, the linearizations performed proved
inadequate even in simulated models. Thus, one must be ex-
tremely careful in new applications when carrying analytical
models to real applications to ensure they describe the real
system with sufficient accuracy. However, it could have been
possible, with further modeling and the application of non-
linear control techniques, to control the fully non-linear plant.

2) Model Complexity / Robustness Trade-off: In this
study, opposite ends of the spectrum in model complexity
were examined. On one hand, the LQR-Observer imple-
mentation requires the model of the system and its state-
space equation. On the other hand, the hysteresis controller
is model-free and requires a single parameter, its set-point
threshold.

The increased model complexity of the LQR controller
provides more confidence on the placement of the system
poles (if the system was linear), at the expense of narrowing

down the range of its applicability. Uncertainty in the curve
fits performed to get the non-linear functions, as well as
in the plant characteristics due to external factors will lead
the controller to unknown regions of the Laplace plane. For
both cases, robustness needs to be assessed if the application
is critical. However, due to the lack of extra parameters in
the model-free approach, it is very likely that the set of
parameters for which the model is stable constitutes a larger
fraction of the parameter space.

3) Effect of Coil Temperature: Although very briefly dis-
cussed in this work, it was found the coil power dissipation
was found to be the major reason why the analog hysteresis
controller eventually becomes unstable. The warming up of
the coil causes its wire resistance to increase, changing not
only its current but also its dynamics. The ratio of resistances
of the cold coil versus its equilibrium temperature (which is
very specific to this construction geometry) was found to be
approximately Rhot/Rcold = 1.2.

One can tune the voltage Vref in the analog controller
to be stable when the coil is cold and change it as the
coil heats up, which would require a temperature sensor
input and fine-tuning to get the temperature curve stable
across all temperatures. In this work, however, the reference
voltage was constant, meaning that the stable operation time
is limited.

4) Presence of the Wireless Transmitter: Another interest-
ing practical observation specific to levitating objects where
power transfer takes place is that the wireless transmitter
signal will be captured by the Hall effect sensor. If the Hall
effect sensor is sufficiently slow, the high frequency signal
will be low-passed and not be a problem. However, the small
signal can still contribute to noise at the digitization levels,
systematically biasing the rounding of the digital readings
and potentially causing the destabilization of the system.

Specifically to the ATmega328P microprocessor, the ab-
sence of analog filters in its analog inputs will cause the
high frequency signal to be aliased, characterizing a non-
white sensor noise reading. A signal of 2 mV amplitude at
600 kHz was measured at the analog input port where the
Hall effect sensor was connected when the TX coil was on.
This was also a reason why the analog hysteresis controller
potentially performed better than its digital counterpart, as
the comparator amplifier provides another layer of low
frequency filtering.
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APPENDIX

A. Three-dimensional system stability

As briefly discussed in Section III-A, the floating magnet
problem is inherently a three-dimensional control problem,
where the floating element has all 6 degrees of freedom.
In order to facilitate an analytical understanding of the
control problem of the real system, both the solenoid and
the permanent magnet will be simplified as magnetic dipoles
of dipole moment ~ms and ~mp, respectively. A depiction of
the ~B field generated by these magnetic dipoles is shown in
Figure 19 for reference.

An analytical solution for the force between two magnetic
dipoles based on the Biot-Savart law is provided by [5] and
shown in Equation 17, where ~r is the distance vector between
the two dipoles, r̂ is its unit vector and r is its magnitude.
Furthermore, µ0 is the permeability of free space.

~F =
3µ0

4πr4

(
(r̂ × ~ms)× ~mp + (r̂ × ~mp)× ~ms

− 2r̂( ~ms · ~mp) + 5r̂[(r̂ × ~ms) · (r̂ × ~mp)]

) (17)

The same authors later [6] provided a calculation for the
torque between dipoles, where ms and mp are the magnitude
of the dipole moments:

~τ =
µ0msmp

4πr3
[3(m̂s · r̂)(m̂p × r̂) + (m̂p × m̂s)] (18)

Equations 17 and 18 are approximate under the assumption
that the distance r between the dipoles is large. Let’s further
consider the configuration of Figure 3, where the solenoid
is above the permanent magnet in a Cartesian coordinate
system where ẑ is downwards. In the desired state, the two

dipoles are aligned in the vertical direction (m̂s = m̂p = ẑ)
and positioned directly under another (~r = rẑ).

In order to perform a linearized disturbance analysis,
let’s first add a small rotation to the dipole moment of the
permanent magnet ~mp and a small perturbation to its position
vector ~r. The disturbed vectors ~m∗p and ~r∗ would then be
expressed as:

~m∗p = Rx(θ)Ry(φ) ~mp = mp

ζxζy
1

 (19)

~r∗ =

εxεy
z

 (20)

Where ζx = θ and ζy = φ are small because θ and φ in
the rotation matrices Ri are small angles. No rotation around
the z axis was considered. Similarly, εx and εy are also small
compared to z. It is straightforward to replace the disturbed
vectors in the force and torque Equations 17 and 18 and drop
the higher order terms to obtain:

~F =


3µ0msmp(zζx − 4εx)

4πz4|z|
3µ0msmp(zζy − 4εy)

4πz4|z|
−3µ0msmp

2πz3|z|

 (21)

~τ =


−msmpµ0

4πz4|z|
(3εyz − 2ζyz

2)

msmpµ0

4πz4|z|
(3εxz − 2ζxz

2)

0

 (22)

Where the z component of torque is zero because it only
contains higher order terms. To assess the stability of the
system, it is more convenient to lump the positive constant
C = mpµ0/4π in the force and torque vectors. It is also
further assumed for now that ms, the solenoid dipole, is
constant:

~F =


ms

z4|z|
(3Czζx − 12Cεx)

ms

z4|z|
(3Czζy − 12Cεy)

−2Cms

z3|z|

 (23)

~τ =


− ms

z4|z|
(3Cεyz − Cζyz2)

ms

z4|z|
(3Cεxz − Cζxz2)

0

 (24)

All dependences are now linearized, except for the z
dependence. In order to keep the equations of motion of the
floating magnet analytically tractable, the permanent magnet
will be assumed to be spherical, such that its products of
inertia are zero and its tensor of inertia I is a diagonal matrix
where all non-zero elements are equal (Ixx = Iyy = Izz =
I). The classical equations of motion:



{
M ~̈r∗ = ~F

I~̇ω = ~τ
(25)

Can then be used for assessing the system stability. Note
the angular acceleration ~̇ω is the second time derivative of
~m∗p/mp, which means the z component equation is already

identically satisfied by the zero torque τz .
In order to perform a linearization of the z displacement

around an equilibrium point z0, let’s define a position vector
x as the combination of the disturbance displacement and
rotation, where εz is a z disturbance around the equilibrium
point z0.

x =


εx
εy
εz
ζx
ζy

 (26)

The linearization of the force and torque equations gives
the following Jacobian matrix J :

J =



−12Cms

Mz4
0 |z0|

0 0 3Cms

Mz3
0 |z0|

0

0 −−12Cms

Mz4
0 |z0|

0 0 3Cms

Mz3
0 |z0|

0 0 −8Cms

Mz4
0 |z0|

0 0

0 −3Cms

Iz3
0 |z0|

0 0 Cms

Iz2
0 |z0|

3Cms

Iz3
0 |z0|

0 0 −Cms

Iz2
0 |z0|

0

 (27)

The equations of motion (25) then can be written in state-
space form: [

ẍ
ẋ

]
=

[
0 J
I 0

] [
ẋ
x

]
(28)

Where
[
0 J
I 0

]
= A is the system matrix.

Finding the eigenvalues of A then allows one to assess the
stability of this 3D system for small disturbances. The ex-
pression forms for the eigenvalues are non-trivial and will not
be reproduced herein. Numerical analysis of the expressions
lead to unstable eigenmodes that are related only to the εz
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Fig. 20. Eigenvalues of A obtained by numerically sweeping 0.1 < C < 1
for mp = ms = µ0 = M = I = z0 = 1 plotted in the complex plane.

motion, as well as lateral modes that combine the ζx,y and
εx,y displacement. Figure 20 displays how the eigenvalues
related to these modes distribute in the Laplace plane, for a
range of C values between 0.1 and 1 when the remaining
constants are maintained equal to unity. Similar numerical
studies have been performed when the other constants are
varied, resulting in very similar eigenvalue plots. For each
case, 4 eigenvalues related to the lateral modes are always
unstable, apart from the unstable εz eigenmode.

These results lead to believe that, apart from the expected
unstable z mode, there are also unstable lateral and torsional
modes that even though are fully decopuled from the z
mode from analysis of the eigenvectors of A, can also
become unstable. Further analysis needs to be performed to
understand if the instability of the lateral modes is related
to the z mode instability or if the nature of the instability
is related to the precession motion arising from the angular
disturbances introduced.
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